Articles | Volume 1, issue 1
https://doi.org/10.5194/wcd-1-175-2020
https://doi.org/10.5194/wcd-1-175-2020
Research article
 | 
23 Apr 2020
Research article |  | 23 Apr 2020

Front–orography interactions during landfall of the 1992 New Year's Day Storm

Clemens Spensberger and Sebastian Schemm

Related authors

Spatio-temporal filtering of jets obscures the reinforcement of baroclinicity by latent heating
Henrik Auestad, Clemens Spensberger, Andrea Marcheggiani, Paulo Ceppi, Thomas Spengler, and Tim Woollings
EGUsphere, https://doi.org/10.5194/egusphere-2024-597,https://doi.org/10.5194/egusphere-2024-597, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
WCD Ideas: Teleconnections through weather rather than stationary waves
Clemens Spensberger
EGUsphere, https://doi.org/10.5194/egusphere-2023-2353,https://doi.org/10.5194/egusphere-2023-2353, 2023
Short summary
Bedymo: a combined quasi-geostrophic and primitive equation model in σ coordinates
Clemens Spensberger, Trond Thorsteinsson, and Thomas Spengler
Geosci. Model Dev., 15, 2711–2729, https://doi.org/10.5194/gmd-15-2711-2022,https://doi.org/10.5194/gmd-15-2711-2022, 2022
Short summary
Dynamical drivers of Greenland blocking in climate models
Clio Michel, Erica Madonna, Clemens Spensberger, Camille Li, and Stephen Outten
Weather Clim. Dynam., 2, 1131–1148, https://doi.org/10.5194/wcd-2-1131-2021,https://doi.org/10.5194/wcd-2-1131-2021, 2021
Short summary
Smoother versus sharper Gulf Stream and Kuroshio sea surface temperature fronts: effects on cyclones and climatology
Leonidas Tsopouridis, Thomas Spengler, and Clemens Spensberger
Weather Clim. Dynam., 2, 953–970, https://doi.org/10.5194/wcd-2-953-2021,https://doi.org/10.5194/wcd-2-953-2021, 2021
Short summary

Related subject area

Dynamical processes in midlatitudes
Warm conveyor belt characteristics and impacts along the life cycle of extratropical cyclones: case studies and climatological analysis based on ERA5
Katharina Heitmann, Michael Sprenger, Hanin Binder, Heini Wernli, and Hanna Joos
Weather Clim. Dynam., 5, 537–557, https://doi.org/10.5194/wcd-5-537-2024,https://doi.org/10.5194/wcd-5-537-2024, 2024
Short summary
Influence of radiosonde observations on the sharpness and altitude of the midlatitude tropopause in the ECMWF IFS
Konstantin Krüger, Andreas Schäfler, Martin Weissmann, and George C. Craig
Weather Clim. Dynam., 5, 491–509, https://doi.org/10.5194/wcd-5-491-2024,https://doi.org/10.5194/wcd-5-491-2024, 2024
Short summary
Analysing 23 years of warm-season derechos in France: a climatology and investigation of synoptic and environmental changes
Lucas Fery and Davide Faranda
Weather Clim. Dynam., 5, 439–461, https://doi.org/10.5194/wcd-5-439-2024,https://doi.org/10.5194/wcd-5-439-2024, 2024
Short summary
A Lagrangian framework for detecting and characterizing the descent of foehn from Alpine to local scales
Lukas Jansing, Lukas Papritz, and Michael Sprenger
Weather Clim. Dynam., 5, 463–489, https://doi.org/10.5194/wcd-5-463-2024,https://doi.org/10.5194/wcd-5-463-2024, 2024
Short summary
The upstream–downstream connection of North Atlantic and Mediterranean cyclones in semi-idealized simulations
Alexander Scherrmann, Heini Wernli, and Emmanouil Flaounas
Weather Clim. Dynam., 5, 419–438, https://doi.org/10.5194/wcd-5-419-2024,https://doi.org/10.5194/wcd-5-419-2024, 2024
Short summary

Cited articles

Aune, B. and Harstveit, K.: The Storm of January 1. 1992, Tech. Rep. 23/92 Klima, Det Norske Meteoroligiske Institutt, Oslo, Norway, 1992. a, b
Atmospheric Dynamics Group, Institute for Atmospheric and Climate: LAGRANTO – The Lagrangian Analysis Tool, Science, ETH Zurich available at: https://iacweb.ethz.ch/staff/sprenger/lagranto/, last access: 22 April 2020. a
Berry, G., Reeder, M. J., and Jakob, C.: A global climatology of atmospheric fronts, Geophys. Res. Lett., 38, L04809, https://doi.org/10.1029/2010GL046451, 2011. a
Bjerknes, J. and Solberg, H.: Meteorological conditions for the formation of rain, Geofysiske Publikasjoner, II, 1–59, 1921. a, b
Bjerknes, J. and Solberg, H.: Life cycle of cyclones and the polar front theory of atmospheric circulation, Geofysiske Publikasjoner, III, 1–16, 1922. a, b
Download
Short summary
In this paper, we take a second look at the development of an intense storm that made landfall in Norway a few hours into the new year of 1992, focussing on the effect of the Scandinavian mountains on the storm. We find that the cyclone core evolves largely unaffected, although both the warm and the cold fronts decay rapidly while passing over the mountains. This result suggests that the fronts of a cyclone can become detached from their cyclone core as part of the cyclone’s occlusion process.